The Generator Paradigm in Smalltalk

Tim Budd'

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The method of generators is a powerful programming technique for many prob-
lems. Unfortunately, it is not widely known or employed. This paper describes
the generator paradigm, illustrating the use of the technique by several pro-
grams in the language Smalltalk.

INTRODUCTION

In computer science, as in many other areas of human endeavor, people fre-
quently attempt to solve problems by relating them to a paradigm, that is an
example or model. Students, for example, when presented with a novel prob-
lem, will often try to formulate it in a manner similar to problems they have
already been shown or solved for themselves. This is only natural, and is one
reason why it is important for students in computer science to be exposed to a
wide variety (not necessarily a wide number) of computer languages. Just as
with natural languages, the computer language in which a problem is solved
colors in a forceful way the type of solution employed. The wider the variety
of languages a student is exposed to, the larger the number of paradigms they
will have seen, and the broader will be their outlook on a new problem.

This paper describes one such programming paradigm, that of generators.
The concept of generators occurs in many computer languages, but unfor-
tunately is not a natural technique in the languages most commonly encoun-
tered by the student (Pascal, C, Fortran). Thus, while it is a valuable problem
solving method for many classes of problems, it is not widely known or
employed.

The generator paradigm is most useful in situations where there may not be
a single, unambiguous, correct answer to a given question. This occurs fre-
quently in such fields as pattern matching, data base systems, artificial intelli-
gence as well as others. To illustrate, consider the pattern matching question

1 This paper was written while the author was on leave from the University of Arizona. The
author’s present address is: Department of Computer Science, Oregon State University, Corvallis,
Oregon, 97331 USA.

“At what location does the letter ‘i’ occur in the word ‘Mississippi’?” A single
answer, such as ‘2, is correct but unsatisfactory. For example, this question
might be a result of a larger problem, such as “at what location does the string
‘ip” occur in the word ‘Mississippi’?” Thus it is not sufficient to consider only
the first answer to a question, but one must produce a/l answers to the ques-
tion. One possibility is to return a ser of answers. This works if the set of
solutions is small, but becomes unwieldy if the set of answers is large or
infinite. The generator paradigm is an attractive alternative.

For the purposes of this paper we will say a generator is any object (pro-
cedure, module, abstract datatype, class instance, or whatever) that can
respond with a sequence of answers to a given query, one at a time. A genera-
tor for our example problem when asked for the position of ‘i’ in the word
‘Mississippi” would first respond ‘2. When asked again it would respond 5,
then ‘8’, then ‘11°, and finally ‘no more answers’.

Generators can be written in any language that supports co-routines, such as
Simula [1], or SL5 [7]. They are used, although not always in ways that are
obvious to the programmer, in Prolog [4]. They appear as a fundamental pro-
gramming technique in the language Icon [6]. They can even be written, with
the aid of a little run-time support, in C [2]. In this paper we will discuss the
use of generators in Smalltalk (5], and in particular the examples will use the
dialect of Smalltalk called Little Smalltalk [3].

SMALLTALK AND OBJECT ORIENTED PROGRAMMING

There is not sufficient space to present more than an elementary introduction
to the Smalltalk language, however a few concepts are central to the discussion
and must be advanced. A more complete description of the language can be
found in [3,5].

The traditional model describing the behavior of a computer executing a
program can be characterized as the process-state, or ‘pigeon-hole’ model. In
this view the computer is a data manager, following some pattern of instruc-
tions, wandering through memory pulling values out of various slots (memory
addresses), transforming them in some manner, and pushing the results back
into other slots. By examining the values in the slots one can determine the
state of the machine, or the results produced by the computation. While this
may be a more or less accurate picture of what is physically taking place in a
computer, it does little to help us understand how to solve problems using the
computer and is certainly not the way most people (pigeons and postmen
excepted) go about solving problems.

Let us examine a real world situation and then ask how we might make the
solution of problems on a computer more closely model the methods people
use in everyday life. Suppose I wish to send flowers to my grandmother for
her birthday. She, however, lives in a city many miles away. It is a task easy
enough to do; I merely go to a local florist, describe the nature and number of
flowers I desire, and I can be assured that they will be automatically delivered.
If T stopped to investigate how this gets accomplished 1 would probably dis-
cover that my florist sends a message describing my order to another florist in

3

my grandmother’s city, who then takes care of the actual delivery. I might
inquire further to find out how the florist in my grandmother’s city obtains the
flowers, finding perhaps that they are obtained in bulk in the morning from a
flower wholesaler. If I persist, I might even be able to follow the chain all the
way back to the farmer who grows the flowers, and discover what requests
were made by each member of the chain in order to solicit the desired out-
come from the next.

The important point, however, is that I do not need to, indeed most of the
time do not want to, know how my simple directive ‘send flowers to my grand-
mother’ is going to be carried out. In real life we call this process ‘delegation
of authority’. In computer science it is called ‘abstraction’ or ‘information hid-
ing’. At the heart, these terms amount to the same thing. There is a resource
(a florist, a file server) that I wish to use. In order to communicate, I must
know the commands the resource will respond to (send flowers to my grand-
mother, return a copy of the file named ‘chapterl’). The steps the resource
must take in order to respond to my request are in all likelihood much more
complex than I realize, but in any case there is no reason for me to know the
details of how my directive is implemented, as long as the response (the
delivery of the flowers, receiving a copy of my file) is well defined and predict-
able.

The object-oriented model of problem solving views the computer in much
the same fashion as just described. Indeed many people who have no training
in computer science and no idea how a computer works find the object-
oriented model of problem solving quite natural. Surprisingly, however, many
people who have a traditional background in computer programming initially
think there is something strange about the object-oriented view. The notion
that ‘7’ is an object, and ‘+’ a request for an addition, may at first seem
strange. But soon, the uniformity, power, and flexibility the object-message
metaphor brings to problem solving makes this interpretation seem natural.

As we have been suggesting, the Smalltalk universe is inhabited by objects.
If we invert the metaphor, using it to describe my flower example, I am an
object and the flower shop (or the florist in it) is another object. Actions are
instigated by sending requests (or messages) between objects. I transmitted the
request ‘send flowers to my grandmother’ to the florist-object. The reaction of
the receiver for the message is to execute some sequence of actions, or method,
to satisfy my request. It may be the case that the receiver can immediately
satisfy my request. On the other hand it will often be the case that in order to
meet my needs, the receiver is required to transmit other messages to yet more
objects (the message my florist sends to the florist in my grandmothers city, or
a command to a disk drive). In addition, there is an explicit response (a
receipt, for example, or a result code) returned directly back to me. DaN
INGALLs describes the Smalltalk philosophy [8]:

‘Instead of a bit-grinding processor raping and plundering data
structures, we have a universe of well-behaved objects that courte-
ously ask each other to carry out their various desires.’

4

Such anthropomorphic viewpoints are common among Smalltalk program-
mers. In subsequent sections we will see how the Smalltalk language embodies
this object-oriented view of programming. By describing the solution of
several problems in Smalltalk, we hope to show how the object-oriented model
aids in the creation of software systems, and assists in the solution of problems
using the computer.

SMALLTALK SYNTAX
In this section we present a brief overview of Smalltalk syntax, just enough to
make the examples presented later in the paper understandable. Once more,
the reader interested in further information should consult the references.

An object can be a literal object, such as a number (2, for example), or a
named object, such as an identifier (x, for example). An assignment arrow is
used to associate a name with an object. The statement

X « 2

makes the identifier x temporarily represent the same object as the literal
object 2. This assignment may be later overwritten by other assignments to
the same identifier.

Action is initiated by sending messages to objects. A message can simply be
a command, with no arguments. For example, the following statement:

x squared

illustrates the message squared being sent to the object x. In response, the
object x will return a new object. The particular nature of the response is
always defined by the category (in Smalltalk terms, the Class) of the recipient
for the message. If x is a number, the response to the message squared will be
the object representing the value of the number multiplied by itself. Thus, the
following example will make the identifier y represent the object 4.

Y <« x squared

Messages can also take arguments. The arithmetic operations, for example,
are interpreted as messages to the left side, having the right side as argument.
Thus the expression:

x+3

shows the message ‘+ being passed to the object x, accompanied by argument
3.

A third form of message is permitted to take an arbitrary number of argu-
ments. This form of message is written as a sequence of keywords, that is
names followed by colons, separating the receiver and arguments. For exam-

ple:

x between : 2 and : 4
shows the message between:and: being passed to the object x, accompanied by
two arguments. Messages can be composed, with messages having no

5

arguments taking precedence over binary (arithmetic style) messages, and
binary messages taking precedence over keyword messages. Parenthesis can be
used to provide alternative groupings.

Some messages have side effects, in addition to returning a value. The mes-
sage print, for example, will display a value on an output device. Thus:

(x squared + 3) print

will cause the value 7 to be displayed.

A novel feature of Smalltalk is the ability to easily encapsulate actions for
performance at a later time. This is accomplished using a block. which is writ-
ten as a pair of square braces surrounding a list of Smalltalk statements.
Because a block is an object, it can be assigned to an identifier or used as an
argument in an expression, like other objects. For example:

z « [x print. x « x+1]

assigns a block to the identifier z. Note that a period is used to separate the
statements within the block. These statements are not immediately executed;
instead, they are executed when the message value is passed to the block. If at
some later time the statement:

z value

is executed, the value 2 (the current binding of the object x) will be displayed
and x will be updated. The block continues to exist, and the actions can be
repeated merely by sending the value message to the block again, as often as
necessary. Note that the binding for the identifier x derives from the sur-
rounding context of the definition of the block, and not from the context in
which the message value is used.

Blocks are used to implement a number of control structures in Smalltalk.
For example the conditional execution statement is constructed as a message
passed to an object of type boolean using a block as an argument.

(x < 3)ifTrue: [x « x+1]

If the boolean (the recipient of the ifTrue: message) is true, the block is exe-
cuted; otherwise not. Similarly the while loop is constructed using a block for
both the recipient and the argument.

[x < 10]) whileTrue: [x print. x— x+1]

Blocks can also be written so as to take parameter values, and thus in many
ways act like statically scoped in-line procedures. For example, the following
block:

w « [:a| a squared print]

defines w to be a block taking one argument. The keyword message value: is
used to invoke such a block. For example:

w value: 6

will result in the value 36 being displayed.

The sequence of actions to be executed in response to a message is described
by a method, which corresponds in some ways to a procedure in a conventional
language. For example, the following method describes the message squared :

squared

1 self * self
Within a method, the identifier self refers to the receiver of the message.
The up arrow (1) precedes the value to be returned in response to the message.
A method for a message that takes arguments must provide identifier names
for the arguments:

between: lower and: upper

1 (self > = lower) & (self <<= upper)

One final bit of syntax is useful in situations that might otherwise require
the introduction of temporary variables. A cascade is formed from an expres-
sion, and one or more continuations of messages (messages without a receiver)
separated by semicolons. An example might be:

(x+2); squared

The result of a cascade is the result of the expression to the left of the first
semicolon. This value is also used as the receiver for messages to the right of
the semicolon, and whatever response they produce is discarded. In almost all
situations where a cascade is used the expression to the left is creating a new
object, and the message on the right is initializing it in some fashion. The cas-
cade is used for the side effect whatever message on the right side may have,
not for the response it will return.

GENERATORS
A generator is any object that represents a collection of other objects and that
responds to the following two messages:

Sirst The response should be an element of the collection, or the special
value nil if there are no elements in the collection.
next The response should be another element in the collection, or nil if

there are no more elements in the collection.

We do not require that the collections be in any specific order, only that all
elements will eventually be produced if a sufficient number of nexr messages
are received and no element will be produced more than once.

A simple generator is one used to produce values in arithmetic sequence.
The message fo:, used in conjunction with numbers, produces such a generator.

For example:

x e« 3t:9
x first

3
X next

4

The following method describes a useful message for dealing with genera-
tors, the message do:.

do: aBlock | item |

item <« self first.
[item notNil } whileTrue:

[aBlock value: item . item « self next].
1 nil

We will explain several features of this method. There is a temporary vari-
able named item used in the method; this variable is declared by placing it in a
list surrounded by vertical bars following the pattern describing the names of
the method and of the arguments. This particular method appears as part of
the description of all generators. The special identifier self refers to the reci-
pient of the do: message. Since this must be able to respond to first and next,
it must be a generator. The body of the method is a simple loop. Before
entering the loop the temporary variable item is assigned the result of passing
the message first to the recipient. While item is not nil the value is used as an
argument in a message value:, passed to the variable aBlock. The variable item
is then updated by requesting the next value from the sequence.

The argument used with this message must be a one argument block. The
block is executed on each element of the collection. For example:

(0 t0: 5) do: [:x | x squared print]

o b -0

16
25

Subsequent sections will illustrate the utility of the generator concept.

A SIMPLE EXAMPLE

An example will illustrate how generators can be written in Smalltalk. Con-
sider the problem of producing prime numbers. By definition, a prime number
is a value having only two distinct divisors, itself and 1. A generator for prime
numbers will produce the first prime value (namely 2) when offered the mes-
sage first, and successive prime numbers in response to each next message. If a
number n divides a number m, then the prime factors of n must also divide m.
Thus to tell if a number m is prime we need not test all values less than m,
only those values that are prime. Therefore a simple generator for primes can
be constructed by merely retaining the previously generated primes in a List, a
data structure that will maintain elements in their order of insertion. Each
time a value is requested, an object representing the last prime produced is
incremented and tested until a value having no factors is found. The new
value is then appended to the list and returned. Keeping the primes in order
allows the loop to terminate as soon as a value larger than Vn is encountered,
where n is the value to be tested.

The methods for each type of object in the Smalltalk language are gathered
together to form what is known as a cluss. For example all integers are ele-
ments of class Integer, all arrays of class Array and so on. The response of an
object when presented with any given message is determined by the methods
associated with the class of that object. The following is a class description for
a prime number generator. Each instance of this class will, in response to the
messages first and next, return a stream of prime numbers. The variables
prevPrimes and lastPrime, listed following the class name, are local variables
for the class. Each instance of the class maintains its own copies of these vari-
ables, and they can be used only in the methods for the class.

New instances of a class are created using the message new. In this exam-
ple, a new instance of the class List is created and stored in the identifier
prevprimes. A List is a simple data structure that maintains elements in the
order that they are inserted (using the message add:). Like most data struc-
tures in Smalltalk, a List is also a generator, and thus responds to the message
do:

Class Primes
| prevPrimes lastPrime |
[
first
prevPrimes « List new.
prevPrimes add: (lastPrime < 2).
1 lastPrime

next
[lastPrime « lastPrime + 1.
self testNumber: lastPrime | whileFalse.
prevPrimes add: lastPrime.
1 lastPrime

testNumber: »
prevPrimes do: [:x|
(x squared > n) ifTrue: [1 true].
(n \ \ x = 0)ifTrue: [1 false]]
]

The message festNumber: is used to determine whether a proposed number
is prime. It accomplishes this by performing a modular division (\ \) of the
number with previous primes. If the remainder after division is zero, a previ-
ous prime divides the number and it cannot be prime. If no number less than
the square root of the proposed number divides the number, then it must be
prime.

An obvious problem with this prime number generator is that it requires an
ever increasing amount of storage to maintain the list of previous primes. If
one were constructing a long list of prime values, the size of this storage could
easily become a problem. A recursive version is possible which trades longer
computation time for reduced storage. This is analogous to a recursive pro-
cedure in programming languages such as Pascal. The following program does
not maintain the list of previous primes, but instead regenerates the list each
time a new number is to be tested. The expression ‘Primes new’ produces a
new instance of the prime generator each time the message festNumber: is
received.

10

Class Primes
| lastPrime |
[
first
1 (lastPrime « 2)

next
{ lastPrime « lastPrime + 1.
self testNumber: lastPrime | whileFalse.
1 lastPrime

testNumber: »
(Primes new) do: [:x |
(x squared > n) ifTrue: [1 true].
(n \\ x = 0) ifTrue: [1 false |]

FILTERS

An entirely different program, solving the same task as the prime number gen-
erators described in the last section, will illustrate another programming tech-
nique that is frequently useful in conjunction with generators, which is the
notion of filters. A filter is a generator that filters, or modifies, the values of
another underlying generator. The class FactorFilter (below) exemplifies some
of the essential features of a filter. Instances of FactorFilter are initialized by
giving them a generator and a specific nonnegative value, using the message
remove:from:. In response to next (the message first is in this case replaced by
the initialization protocol remove:from:), values from the underlying generator
are requested, and returned, with the exception of values for which the given
number is a factor, which are repressed. Thus the sequence returned by an
instance of FactorFilter is exactly the same as that given by the underlying
generator, with the exception that values for which the given number is a fac-
tor are filtered out. (The symbol = is the Smalltalk message representing ‘not
equals’).

11

Class FactorFilter
| myFactor generator |
[
remove: factorValue from: generatorValue
myFactor « factorValue.
generator « generatorValue

next | possible |
[(possible — generator next) notNil |
whileTrue:
[(possible \ \ myFactor "= 0)
ifTrue: | 1 possible] .
1 nil
]

Using FactorFilter, a simple generator for prime numbers can be con-
structed. An instance of Interval (the generator that merely returns numbers
in arithmetic progression) is first constructed generating all numbers from 2 to
some fixed limit. As each value is removed, a filter is inserted in front of the
generator to insure that all subsequent multiples of the value will be elim-
inated. A new value is then requested from the updated generator.

Class Primes
| primeGenerator lastFactor |
[
first
primeGenerator « 2 to: 100 .
lastFactor « primeGenerator first .
1 lastFactor

next
primeGenerator < FactorFilter new;
remove: lastFactor from: primeGenerator
lastFactor « primeGenerator next .
1 lastFactor

]

Pictorially, the underlying generator constructed by the first occurrence of
the message next can be viewed as follows:

2to:n
generator

<1 2filter

When asked for the next prime, the generator is modified by adding a filter,
this time for the last prime value returned, the number 3.

12

2to:n
generator

<1 3 filter 2 filter

The program continues, each time a new prime is requested a filter is con-
structed to remove all factors of the previous prime. In this fashion, all the
primes are eventually generated.

2t0:n

<— | n filter 3 filter 2 filter
penerator

Of course, like the first two programs in the last section, the storage required
for the chain of filters is proportional to the number of primes generated so
far. Despite this, actual timings on running programs show that the filter pro-
gram is the fastest of the three prime number generating programs described
here. However, we should note that these programs do not represent the
fastest algorithms known for producing prime numbers, but are merely
intended as instructive examples of classes and generators in Smalitalk.

GOAL DIRECTED EVALUATION

A useful programming technique when used in conjunction with generators is
goal directed evaluation. Using this technique, a generator is repeatedly queried
for values until some condition is satisfied. In a certain sense the notion of
filters we have just described represents a simple form of goal directed evalua-
tion. The goal of instances of FactorFilter, for example, is to find a value from
the underlying generator for which the given number is not a factor. In the
more general case of goal directed evaluation the condition frequently involves
the outcome of several generators acting together. An example will illustrate
this method.

Consider the problem of placing eight queens on a chess board in such a
way that no queen can attack any other queen (illustrated below). In this sec-
tion we will describe how such a problem can be formulated and solved using
generators, filters, and goal directed evaluation.

We first observe that in any solution, no two queens can occupy the same
column, and that no column can be empty. We can therefore assign a specific
column to each queen at the start, and reduce the problem to finding a correct
row assignment for each of the eight queens.

In general terms, our approach will be to place queens from left to right (the
order in which we assign numbers to columns). An acceptable solution for
columns 1 through n is one in which no queen in columns 1| through n can
attack any other queen in those columns. Once we have found an acceptable
solution for columns | through 8 we are finished. Before that, however, we
can formulate the problem of finding an acceptable solution for columns 1

13

00~ N WV AW N -
o)

Q

A solution to the eight queens problem

through » recursively, as follows:

1.If n > 1, find an acceptable solution for columns I through n—1. If there
is none, return nil, there is no acceptable solution. Otherwise place the
queen for column n in row 1. Go to step 2.

2. Test to see if any queen in columns 1 through n—1 can attack the queen in
column n. If not, then an acceptable solution has been found. If some
other queen can attack, then go to step 3.

3. If the queen for column 7 is in row 8, then go to step 4, otherwise advance
the queen by one row and go back to step 2.

4. Find the next acceptable solution for columns 1 through n—1. If there is
none, return nil, otherwise place the queen for column # in row 1 and go to
step 2.

Of course, all positions are acceptable in column 1. Responding to first
corresponds to starting in step 1, whereas responding to next corresponds to
starting in step 3. We represent each queen by a separate object, an
instance of class Queen. Each queen maintains its own position in a pair of
variables, and also a pointer to the immediate neighbor on the left. A skele-
ton for the class Queen can be given as follows:

Class Queen
| row column neighbor |

[

setColumn: aNumber neighbor: aQueen
column <« aNumber.
neighbor «— aQueen

|
]

Using this skeleton, our eight queens can be initialized as follows:

14

lastQueen « nil
(1 to: 8) do: [:i | lastQueen — Queen new ;
setColumn: i neighbor: lastQueen |

Following the execution of this code the variable lastQueen points to the last
(rightmost) queen.

We have already described our algorithm in terms of finding the first accept-
able position and finding the next acceptable position. It is therefore easy to
apply our generator paradigm (using the messages first and next) to this situa-
tion. Step I, for example, corresponds to the following method

first
(neighbor notNil)
ifTrue: | neighbor first].
row « 1.
1 self testPosition

Rather than falling directly into step 2, as we did in the informal description
of the algorithm, an explicit message (testPosition) is used to perform steps 2, 3
and 4. Thus one can read self testPosition as being the equivalent of ‘go to
step 2’ in the informal description. Before describing the method for this mes-
sage, we describe the method used to find the nexr acceptable position, which
is a combination of steps 3 and 4 in our description.

next
(row = 8)
ifTrue: [((neighbor isNil) or: | neighbor next isNil])
ifTrue: { 1 nil].
row « 0].
row « row + 1.
1 self testPosition

A coding trick is used here; the zero assigned to the identifier row is
immediately incremented, resulting in the queen being placed into row 1.
Once more the ‘self testPosition’ message can be interpreted as ‘go to step 2.

All that remains is to test a position to see if any queen to the left can
attack. As we have aiready noted, any position is acceptable to the leftmost
queen. Suppose a queen, call her Q, is not the leftmost queen. We pass a
message to the neighbor of Q asking if she can attack the position of the queen
Q. If the neighbor queen can attack, she will return true, otherwise she will
pass the message on to her neighbor, and so on until the leftmost queen is
reached. If the leftmost queen cannot attack, she will return false. Notice the
recursive use of the message next to find the next acceptable position, in case
an attack is possible. This corresponds to the directive ‘go to step 3’ found in
step 2 of our informal description.

testPosition
(neighbor isNil) ifTrue: | 1 self |.
(neighbor checkRow: row column: column)
ifTrue: [1 self next |
ifFalse: | 1 self]

We have reduced the problem to the much simplier one of each queen taking a
pair of coordinates for a queen positioned to the right, and responding
whether she or any queen to the left can attack that position. Since we know
the queen to the right is in a different column from the queen to the left. she
can only be attacked if she is in the same row or if the differences in the
columns is equal to the differences in the rows (i.e., a diagonal).

checkRow: festRow column: testColumn | columnDifference |
columnDifference « testColumn — column.
(((row = testRow) or:
[row + columnDifference = testRow 1) or:
[row — columnDifference = testRow 1)
ifTrue: [T true }.
(neighbor notNil)
ifTrue: | 1 neighbor check Row: testRow
column: testColumn |}

ifFalse: [1 false |

A final method is useful for producing the answer in a visual form:

printBoard
(neighbor notNil)
ifTrue: [neighbor printBoard }.
(‘column °, column, * row ’, row) print

Putting all the methods for class Queen together, we could type the following
example script:

lastQueen « nil.
(1 to: 8) do: [:i | lastQueen «— Queen new;
setColumn: i neighbor: lastQueen |

16

lastQueen first
lastQueen printBoard

column [row 1
column 2 row 5
column 3 row 8
column 4 row 6
column 5 row 3
column 6 row 7
column 7 row 2
column 8 row 4

lastQueen next
lastQueen printBoard

column 1 row 1
column 2 row 6
column 3 row 8§
column 4 row 3
column 5 row 7
column 6 row 4
column 7 row 2
column 8 row 5

SUMMARY

We have, unfortunately, been able to present only the briefest glimpse of two
topics in the paper; namely generators and the language Smalltalk. Readers
interested in the first topic would do well to read the contrasting presentation
of generators using the language Icon [6]. Readers interested in further infor-
mation on Smalitalk can find the definitive description in the book by GoLD-
BERG and RoBsON [5]. The material in this paper is condensed from a fuller
exposition in Chapter 8 of [3].

REFERENCES

1.

2.

G.M. BIRTWISTLE, O.J. DHAL, B. MYHRHAUG, K. NYGAARD. (1973).
Simula Begin, Studentlitteratur, Lund, Sweden.

T.A. Bupp. (1982). An implementation of generators in C. J. Com-
puter Lang. 7, 2, 69-88.

T.A. BupD. A Little Smalltalk, Addison-Wesley (to be published in
1986).

W.F. CrocksiN, CS. MELLIsH. (1981). Programming in Prolog,
Springer-Verlag, New York.

A. GOLDBERG, D. RoBSON, (1984). Smalitalk-80: The language and Its
Implentation, Addison-Wesley.

R.E. GriswoLDp, M.T. GriswoLD, (1983). The Icon Programming
Language, Prentice-Hall, Inc., Englewood Cliffs, NJ.

17

D.R. HaNsoN, R.E. GriswoLD (1978). The SL5 procedure mechanism.
Comm. ACM 21, 392-400.

D.H. INGALLS (1981). Design principles behind smalltalk. BYTE 6, §,
286-302.

18

